theories are approximate and a discussion of their relative merits is found in the Faraday Society's "General Discussion on Dielectrics."13 If the molecular dipole moment were constant, Debye's theory would require that the Clausius-Mosotti function $(\epsilon - 1)/$ $d(\epsilon+2)$ be independent of density at a given temperature. Tables I and II show that there is a large decrease in the C-M ratio for CH₃F with increasing density. It is noteworthy that Keyes and Oncley² report an increase in this ratio for NH₃. Onsager's theory would require the function $(\epsilon - n^2)(2\epsilon + n^2)/\epsilon d(n^2 + 2)^2$ to be similarly independent of density (here n is the refractive index). For the present case this function increases by 7 percent. These effects might arise either from the inadequacy of the theories or from changes in the dipole moment of CH₃F with density.

There is no reason to suppose that the dipole moment, μ , of a CH₃F molecule in the compressed gas is the same as that of an isolated molecule since a variation of μ with density might easily occur if the molecules were

TABLE III.	Dielectric	absorption	in	fluoromethane
	at 1	megacycle.		

50	0°C	75°C		
(moles/l)	tanð	(moles/l)	tanð	
<6.6	0.00000	< 6.9	0.00000	
7.03	0.00022	7.70	0.00009	
7.40	0.00046	8.38	0.00030	
7.94	0.00128	9.05	0.00072	
8.43	0.00176	9.67	0.00164	
8.93	0.00227	10.30	0.00312	
9.50	0.00330	10.87	0.00504	
10.06	0.00444	11.42	0.00787	
10.58	0.00518	11.94	0.01022	
11.03	0.00669			
11.51	0.00935	100		

 $^{^{\}rm a}$ Measurements to 5 megacycles showed an increase in the absorption with frequency in this range.

distorted by the intermolecular forces. In this respect the apparent dipole moments calculated from the Debye and Onsager theories and given in Table IV are of interest. The change in the Debye values is larger than would be expected from considerations of the magnitude of the intermolecular forces in the pressure range studied. Onsager's model leads to a smaller apparent change in μ and appears to be the more satisfactory in the present case.

If it were possible to calculate the distribution function for compressed CH₃F, Kirkwood's precise treatment^{13, 14} of polar fluids could be applied to the experimental data to find the real change in μ . This calculation is unfortunately exceedingly difficult. In the next section the theory is used in the opposite way, assuming μ to be constant, to find the change in Kirkwood's correlation parameter, g.

FIG. 2. Dielectric loss and correlation parameter for fluoromethane.

RESTRICTED ROTATION NEAR THE CRITICAL POINT

In an earlier note¹⁵ the sudden development of the dielectric loss near the critical density of CH₃F was taken as evidence of a fairly sharp transition between free and restricted rotation of the dipolar molecules. Some further evidence of this is found in the change of ϵ with density. Kirkwood,^{13,14} allowing for the effects of hindered rotation on the dielectric constant, obtained the expression

$$(2\epsilon+1)(\epsilon-1)/9\epsilon d = {}_DP + 4\pi N_0 g\mu^2/9kT,$$

where $_{D}P$ is the molar distortion polarization, N_{0} is Avogadro's number, and μ is the dipole moment of an isolated molecule. The correlation parameter g can be related to the forces restricting the rotation of the molecules. Its divergence from unity is a measure of the extent of the restriction.

Figure (2) shows g as a function of density and temperature. It was calculated on the assumption that μ is

TABLE IV. Apparent dipole moment of fluoromethane.

d	50°C	$50^{\circ}C$ $\mu_{App}(esu \times 10^{-18})^{a}$		$75^{\circ}C$ $\mu_{App}(esu \times 10^{-18})^{a}$	
(moles/l)	Debye	Onsager ^b	(moles/l)	Debye	Onsagerb
0.960	1.806	1.813	1.190	1.804	1.813
3.570	1.745	1.819	3.535	1.759	1.825
7.69	1.615	1.857	6.44	1.670	1.838
10.28	1.517	1.859	9.79	1.562	1.863
12.40	1.449	1.876	11.58	1.500	1.865
14.02	1.400	1.889	14.00	1.423	1.869

^a Smyth and McAlpine's figure (see reference 4) for the distortion polarization $_{D}P = 8.95$ cc/mole was used in calculating μ_{App} . ^b An "effective" refractive index *n* was calculated from the relationship $(n^2-1)/d(n^2+2) = _{D}P$.

¹⁵ David, Hamann, and Pearse (to be published).

¹³ "General Discussion on Dielectrics," Trans. Faraday Soc. 42A (1946).

¹⁴ J. G. Kirkwood, J. Chem. Phys. 7, 911 (1939).

constant. Smyth and McAlpine's⁴ value of $\mu = 1.81 \times 10^{-18}$ esu was used. The curves for both g and tan δ show that the molecules lose their freedom of rotation at high densities. In addition, the 50°C curves have shoulders near the critical density, d_c , suggestive of a fairly sudden loss of some of the rotational freedom as d_c is approached. To confirm the existence of the comparatively low shoulder on the g curve some further

measurements were made several weeks after the original series. These gave results in complete agreement with the earlier ones.

The authors wish to thank Professor R. J. W. Le Fèvre for suggestions leading to this investigation and for some helpful discussions.

The advice and assistance of Dr. J. S. Dryden in the dielectric absorption measurements were of great value.

THERE, DATIVITIES ARE SLAVE FOR ATOS OFFICIALS

It's superfire addre the sud-fan the addrenen of flue dirivente too, as as the episical density of eVLC car, taken as are increased on fails, along transition between free and ristic induction of the directions molecules, some lightlice and the efficiency of the direction of a the direction of the information of the direction of hadrend or above and the information appendix whitten the analysis.

The Part of the - hard (1 - add + at)

where at is the books ministrice polarization is a structure contact and a least officie parment of an isolated and only. It e wateringthe malanet r s can be milited to the harm maladeling the particular of the malanets its theater near from and r is a presence of the caterial of the restriction.

 Printee (1) are any more fore than the matrices of perturber. It was relationed on the list interprise they are

O.more			
ALC:			
			the st Aughter

(2) A set of the final state of the intervention in the fill of the set of

White Romann, cast Perror to be religibled.